Tetration
Appearance
Tetration is the hyperoperation which comes after exponentiation.[1] <math>^{x}{y}</math> means y exponentiated by itself, (x-1) times.[2][3][4] List of first 4 natural number hyperoperations, the inverse of tetration is the super root shown in the example
- Addition
- <math>a + n = a + \underbrace{1 + 1 + \cdots + 1}_n</math>
- n copies of 1 added to a.
- <math>a + n = a + \underbrace{1 + 1 + \cdots + 1}_n</math>
- Multiplication
- <math>a \times n = \underbrace{a + a + \cdots + a}_n</math>
- n copies of a combined by addition.
- <math>a \times n = \underbrace{a + a + \cdots + a}_n</math>
- Exponentiation
- <math>a^n = \underbrace{a \times a \times \cdots \times a}_n</math>
- n copies of a combined by multiplication.
- <math>a^n = \underbrace{a \times a \times \cdots \times a}_n</math>
- Tetration
- <math>{^{n}a} = \underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_n</math>
- n copies of a combined by exponentiation, right-to-left.
The above example is read as "the nth tetration of a".
Examples[change]
- <math> ^{2}3 = 3^3 = 27 </math>
- <math> ^{3}3 = 3^{({3^3})} = 3^{27} = 7,625,597,484,987 </math>
<math>x</math> <math>{}^{2}x</math> <math>{}^{3}x</math> <math>{}^{4}x</math> 1 1 (11) 1 (11) 1 (11) 2 4 (22) 16 (24) 65,536 (216) 3 27 (33) 7,625,597,484,987 (327) 1.258015 × 103,638,334,640,024 4 256 (44) 1.34078 ×10154 (4256) <math>\exp_{10}^3(2.18726)</math> (8.1 × 10153 digits) 5 3,125 (55) 1.91101 × 102,184 (53,125) <math>\exp_{10}^3(3.33928)</math> (1.3 × 102,184 digits) 6 46,656 (66) 2.65912 × 1036,305 (646,656) <math>\exp_{10}^3(4.55997)</math> (2.1 × 1036,305 digits) 7 823,543 (77) 3.75982 × 10695,974 (7823,543) <math>\exp_{10}^3(5.84259)</math> (3.2 × 10695,974 digits) 8 16,777,216 (88) 6.01452 × 1015,151,335 <math>\exp_{10}^3(7.18045)</math> (5.4 × 1015,151,335 digits) 9 387,420,489 (99) 4.28125 × 10369,693,099 <math>\exp_{10}^3(8.56784)</math> (4.1 × 10369,693,099 digits) 10 10,000,000,000 (1010) 1010,000,000,000 <math>\exp_{10}^4(1)</math> (1010,000,000,000 digits)
References[change]
- ↑ "Google Answers: addition, multiplication, exponentiation, then ???". Retrieved 2011-11-02.
- ↑ Daniel Geisler. "tetration.org". Tetration. Archived from the original on 2021-05-06. Retrieved 2011-11-02.
- ↑ "Power Tower - from Wolfram MathWorld". Mathworld.wolfram.com. Retrieved 2011-11-02.
- ↑ "The Fourth Operation". Retrieved 2019-09-11.