Harmonic mean
Harmonic means are a type of mean. It is the number of values divided by the reciprocal of the values.[1] If there are <math>N</math> numbers <math>X_1,X_2,X_3...X_N</math>, then the harmonic mean of these numbers are <math display="block"> \frac{N}{\frac{1}{X_1}+\frac{1}{X_2}+\frac{1}{X_3}+\dots + \frac{1}{X_N}}</math>
Out of the geometric mean and arithmetic mean, the harmonic mean is usually the smallest.[2]
Example[change]
Let's find the harmonic mean of 2,4 and 5. There are three numbers so we will be dividing three. The reciprocals of the numbers are <math>\frac{1}{2}</math>, <math>\frac{1}{4}</math> and <math>\frac{1}{5}</math>. If we add the reciprocals we get <math>\frac{19}{20}</math>. If we divide three by this number, the result is <math>\frac{60}{19}</math> (approximately 3.157894737)
References[change]
- ↑ "mean | Definition, Formula, & Facts | Britannica". www.britannica.com. Retrieved 2022-08-26.
- ↑ Weisstein, Eric W. "Pythagorean Means". mathworld.wolfram.com. Retrieved 2022-08-26.